Advertisements
Advertisements
Question
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Options
True
False
Solution
This statement is False.
Explanation:
sin θ = cos θ for all values of θ.
This is true when θ = 45°
As
`sin 45° = 1/sqrt2`
`cos 45° = 1/sqrt2`
It is not true for all other values of θ.
As sin 30° = `1/2` and cos 30° = `sqrt3/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`cos 19^@/sin 71^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If sin x = cos y, then x + y = 45° ; write true of false
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: cosec2 60° - tan2 30°
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `2sin x/(2)` = 1
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10