English

State whether the following is true or false. Justify your answer. sinθ = cosθ for all values of θ. - Mathematics

Advertisements
Advertisements

Question

State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

sin θ = cos θ for all values of θ.

This is true when θ = 45°

As

`sin 45° = 1/sqrt2`

`cos 45° = 1/sqrt2`

It is not true for all other values of θ.

As sin 30° = `1/2` and cos 30° = `sqrt3/2`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 4.4 | Page 187

RELATED QUESTIONS

Evaluate the following expression:

(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`

(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`cos 19^@/sin 71^@`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


If sin x = cos y, then x + y = 45° ; write true of false


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


find the value of: cosec2 60° - tan2 30°


find the value of: sin2 30° + cos2 30°+ cot2 45°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Find the value of x in the following: `2sin  x/(2)` = 1


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×