English

State whether the following is true or false. Justify your answer. The value of cos θ increases as θ increases. - Mathematics

Advertisements
Advertisements

Question

State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.

Options

  • True

  • False

MCQ
True or False

Solution

This statement is False.

Explanation:

cos 0° = 1

`cos 30° = sqrt3/2 = 0.866`

`cos 45° = 1/sqrt2  = 0.707`

`cos 60° = 1/2 = 0.5`

cos 90° = 0

It can be observed that the value of cos θ does not increase in the interval of 0° < θ < 90°.

Hence, the given statement is false.

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 4.3 | Page 187

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Find the value of:

tan2 30° + tan2 45° + tan2 60°


If sin x = cos y, then x + y = 45° ; write true of false


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If sin(A +B) = 1(A -B) = 1, find A and B.


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×