हिंदी

State whether the following is true or false. Justify your answer. The value of cos θ increases as θ increases. - Mathematics

Advertisements
Advertisements

प्रश्न

State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.

विकल्प

  • True

  • False

MCQ
सत्य या असत्य

उत्तर

This statement is False.

Explanation:

cos 0° = 1

`cos 30° = sqrt3/2 = 0.866`

`cos 45° = 1/sqrt2  = 0.707`

`cos 60° = 1/2 = 0.5`

cos 90° = 0

It can be observed that the value of cos θ does not increase in the interval of 0° < θ < 90°.

Hence, the given statement is false.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.2 | Q 4.3 | पृष्ठ १८७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


If sin x = cos y, then x + y = 45° ; write true of false


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


find the value of: cos2 60° + sec2 30° + tan2 45°


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


secθ . Cot θ= cosecθ ; write true or false


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that : cos60° . cos30° - sin60° . sin30° = 0


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×