Advertisements
Advertisements
प्रश्न
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
cos 0° = 1
`cos 30° = sqrt3/2 = 0.866`
`cos 45° = 1/sqrt2 = 0.707`
`cos 60° = 1/2 = 0.5`
cos 90° = 0
It can be observed that the value of cos θ does not increase in the interval of 0° < θ < 90°.
Hence, the given statement is false.
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
If sin x = cos y, then x + y = 45° ; write true of false
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of: cos2 60° + sec2 30° + tan2 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
secθ . Cot θ= cosecθ ; write true or false
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`