Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
उत्तर
sin230° cos245° + 4tan230° + sin290° + cos20°
sin30° = `(1)/(2)`
cos45° = `(1)/sqrt(2)`
tan30° = `(1)/sqrt(3)`
sin90° = 1
cos0° = 1
sin230° cos245° + 4tan230° + sin290° + cos20°
= `(1/2)^2 (1/sqrt(2))^2 + 4(1/sqrt(3))^2 + 1 + 1`
= `(1)/(4) xx (1)/(2) + (4)/(3) + 2`
= `(1)/(8) + (4)/(3) + 2`
= `(3 + 32 + 48)/(24)`
= `(83)/(24)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: sin2 30° + cos2 30°+ cot2 45°
For any angle θ, state the value of: sin2 θ + cos2 θ
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
If sin 30° = x and cos 60° = y, then x2 + y2 is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.