Advertisements
Advertisements
प्रश्न
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
उत्तर
tan(A - B) = `(1)/sqrt(3)`
⇒ tan(A - B) = tan30°
⇒ A - B = 30° ......(i)
tan(A + B) = `sqrt(3)`
⇒ tan(A + B) = tan60°
⇒ A + B = 60° ........(ii)
Adding (i) and (ii)
A - B + A + B = 30° + 60°
⇒ 2A = 90°
⇒ A = 45°
Substituting value of A in (i)
A - B = 30°
45° - B = 30°
B = 15°
Therefore,
A = 45° and B = 15°.
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate tan 35° tan 40° tan 50° tan 55°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Prove that:
sin 60° = 2 sin 30° cos 30°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Find the value of x in the following: `2sin x/(2)` = 1
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`