Advertisements
Advertisements
प्रश्न
Prove that:
sin 60° = 2 sin 30° cos 30°
उत्तर
LHS = sin 60° = `(sqrt3)/(2)`
RHS = 2 sin 60° cos 60° = `2 xx (sqrt3)/(2) xx (1)/(2) = (sqrt3)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
cosec 31° − sec 59°
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
find the value of: cos2 60° + sin2 30°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.