Advertisements
Advertisements
प्रश्न
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
उत्तर
`(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
= `(1/2)/(1/sqrt(2)) + (1)/(2) - (sqrt(3)/2)/(1) - (sqrt(3)/2)/(1)`
= `sqrt(2)/(2) + (1)/(2) - sqrt(3)/(2) - sqrt(3)/(2)`
= `(sqrt(2) + 1 - 2sqrt(3))/(2)`.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
find the value of: sin2 30° + cos2 30°+ cot2 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Prove that : sec245° - tan245° = 1
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Evaluate: sin2 60° + 2tan 45° – cos2 30°.