हिंदी

Prove that: sin 60° cos 30° + cos 60° . sin 30°  = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1

योग

उत्तर

LHS =sin 60° cos 30° + cos 60°. sin 30°

= `(sqrt3)/(2) (sqrt3)/(2) + (1)/(2) (1)/(2) = (3)/(4) + (1)/(4) = 1 = RHS`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.1 | पृष्ठ २९१

संबंधित प्रश्न

Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate cos 48° − sin 42°


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


If sin x = cos y, then x + y = 45° ; write true of false


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Prove that : cos60° . cos30° - sin60° . sin30° = 0


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×