हिंदी

If A = 30°; show that: cos 2A = cos4 A - sin4 A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
cos 2A = cos4 A - sin4 A

योग

उत्तर

Given that A = 30°

LHS = cos 2A

= cos 2(30°)

= cos 60°

= `(1)/(2)`

RHS = `cos^4"A" – sin^4"A"`

= `cos^4 30° – sin^4 30° `

= `(sqrt3/2)^4 – (1/2)^4`

= `(9)/(16) –  (1)/(16)`

= `(1)/(2)`

LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.3 | पृष्ठ २९३

संबंधित प्रश्न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If sin x = cos y, then x + y = 45° ; write true of false


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


find the value of: tan 30° tan 60°


find the value of: sin2 30° + cos2 30°+ cot2 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Prove that : sec245° - tan245° = 1


If sin(A +B) = 1(A -B) = 1, find A and B.


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×