Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
उत्तर
Given that A = 30°
LHS = cos 2A
= cos 2(30°)
= cos 60°
= `(1)/(2)`
RHS = `cos^4"A" – sin^4"A"`
= `cos^4 30° – sin^4 30° `
= `(sqrt3/2)^4 – (1/2)^4`
= `(9)/(16) – (1)/(16)`
= `(1)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If sin x = cos y, then x + y = 45° ; write true of false
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
find the value of: sin2 30° + cos2 30°+ cot2 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that : sec245° - tan245° = 1
If sin(A +B) = 1(A -B) = 1, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.