हिंदी

If A = 30°; show that: (sin A - cos A)2 = 1 - sin 2A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A

योग

उत्तर

Given that A = 30°

LHS = `(sin "A" – cos "A")^2`

=`(sin 30° – cos 30°)^2`

=`((1)/(2) – (sqrt3)/(2))^2`

= `(1)/(4) + (3)/(4) – (sqrt3)/(2)`

= `1  – (sqrt3)/(2)`

= `2 – (sqrt3)/(2)`

RHS = 1 – sin 2A

= 1 – sin 2(30°)

= 1 – sin60°

= `1 – (sqrt3)/(2)`

= `(2 – sqrt3)/(2)`

LHS = RHS

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.2 | पृष्ठ २९३

संबंधित प्रश्न

Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


sin 2A = 2 sin A is true when A = ______.


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


find the value of: cos2 60° + sin2 30°


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×