Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
उत्तर
Given that A = 30°
LHS = `(sin "A" – cos "A")^2`
=`(sin 30° – cos 30°)^2`
=`((1)/(2) – (sqrt3)/(2))^2`
= `(1)/(4) + (3)/(4) – (sqrt3)/(2)`
= `1 – (sqrt3)/(2)`
= `2 – (sqrt3)/(2)`
RHS = 1 – sin 2A
= 1 – sin 2(30°)
= 1 – sin60°
= `1 – (sqrt3)/(2)`
= `(2 – sqrt3)/(2)`
LHS = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
sin 2A = 2 sin A is true when A = ______.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
find the value of: cos2 60° + sin2 30°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.