Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
उत्तर
`(cos 45°)/(sec 30° + cosec 30°)`
= `(1/sqrt2)/(2/sqrt3+2)`
= `(1/sqrt2)/((2 + 2sqrt3)/sqrt3)`
= `sqrt3/(sqrt2(2+2sqrt3))`
= `sqrt3/(2sqrt2+2sqrt6)`
= `(sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`
= `(2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2)`
= `(2sqrt3(sqrt6-sqrt2))/(24-8)`
= `(2sqrt3(sqrt6-sqrt2))/16`
= `(sqrt18-sqrt6)/8`
= `(3sqrt2 - sqrt6)/8`
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Find the value of x in the following: `2sin x/(2)` = 1
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: sin2 60° + 2tan 45° – cos2 30°.