Advertisements
Advertisements
प्रश्न
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
उत्तर
Let A = 45° and B = 30°
Then,
sin(A - B) = sinA cosB - cosA sinB
⇒ sin45° - 30°) = sin45° cos30° - cos45° sin30°
⇒ sin15° = `(1)/sqrt(2) xx sqrt(3)/(2) - (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ sin15° = `sqrt(3)/(2sqrt(2)) - (1)/(2sqrt(2)`
⇒ sin15° = `((sqrt(3) - 1))/(2sqrt(2)`
cos(A -B) = cosA cosB + sinA sinB
⇒ cos(45° - 30°) = cos45° cos30° + sin45° sin30°
⇒ cos15° = `(1)/sqrt(2) xx sqrt(3)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒ cos15° = `sqrt(3)/(2sqrt(2)) + (1)/(2sqrt(2)`
⇒ cos15° = `((sqrt(3) + 1))/(2sqrt(2)`.
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin 30° cos 30°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° = 2 sin 30° cos 30°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of: sin2 30° + cos2 30°+ cot2 45°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
secθ . Cot θ= cosecθ ; write true or false
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`