हिंदी

If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°. - Mathematics

Advertisements
Advertisements

प्रश्न

If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.

योग

उत्तर

Let A = 45° and B = 30°
Then,
sin(A - B) = sinA cosB - cosA sinB
⇒ sin45° - 30°) = sin45° cos30° - cos45° sin30°

⇒ sin15° = `(1)/sqrt(2) xx sqrt(3)/(2) - (1)/sqrt(2) xx (1)/sqrt(2)`

⇒ sin15° = `sqrt(3)/(2sqrt(2)) - (1)/(2sqrt(2)`

⇒ sin15° = `((sqrt(3) - 1))/(2sqrt(2)`
cos(A -B) = cosA cosB + sinA sinB
⇒ cos(45° - 30°) = cos45° cos30° + sin45° sin30°

⇒ cos15° = `(1)/sqrt(2) xx sqrt(3)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`

⇒ cos15° = `sqrt(3)/(2sqrt(2)) + (1)/(2sqrt(2)`

⇒ cos15° = `((sqrt(3) + 1))/(2sqrt(2)`.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 18

संबंधित प्रश्न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


find the value of: sin 30° cos 30°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Prove that:
sin 60° = 2 sin 30° cos 30°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of sin 60o


find the value of: sin2 30° + cos2 30°+ cot2 45°


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


secθ . Cot θ= cosecθ ; write true or false


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Find the value of x in the following: tan x = sin45° cos45° + sin30°


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×