Advertisements
Advertisements
प्रश्न
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
उत्तर
We have to prove `(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Left hand side
`= (cos (90^@ - A). sin(90^@ - A))/(tan (90^@ - A))`
`= (sinA.cosA)/cot A = sin^2 A``
`= (sin A.cos A.sin A)/cos A`
`= sin ^2 A`
= Right hand side
Proved
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Verify the following equalities:
sin2 60° + cos2 60° = 1