Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
उत्तर
sec45° sin45° - sin30° sec60°.
cos45° = `(1)/sqrt(2)`
⇒ sec45° = `sqrt(2)`
sin45° = `(1)/sqrt(2)`
sin30° = `(1)/(2)`
cos60° = `(1)/(2)`
⇒ sec60° = 2
sec45° sin45° - sin30° sec60°
= `sqrt(2) xx (1)/sqrt(2) - (1)/sqrt(2) xx 2`
= 1 - 1
= 0.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10