Advertisements
Advertisements
प्रश्न
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
उत्तर
RHS = `(2 tan 30°)/(1+tan^2 30°) = (2xx1/(sqrt3))/(1 +(1/sqrt3)^2) = (2/(sqrt3))/(1+(1)/(3)) = (2/sqrt3)/(4/(3)) =2/sqrt3xx3/4=3/(2sqrt3)xxsqrt3/sqrt3=(3sqrt3)/(2xx3)= (sqrt3)/(2)`
LHS = sin (2 × 30°) = sin 60° = `(sqrt3)/(2)`
∴ LHS = RHS
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
secθ . Cot θ= cosecθ ; write true or false
For any angle θ, state the value of: sin2 θ + cos2 θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.