Advertisements
Advertisements
प्रश्न
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
उत्तर
cos 58° = cos (90° - 32°) = sin 32°
sin 22° = sin (90° - 68°) = cos 68°
cos 38° = cos (90 – 52) = sin 52°
tan 18° = cot 72 tan 35° = cot 55°
`=> sin 32^@/sin 32^@ + cos 68^@/cos 68^@ - (sin 52 cosec 52)/(tan 72.cot72 tan 55 cot 55.tan 60)`
`= 1 + 1 - 1/sqrt3 = (2sqrt3-1)/sqrt3 xx sqrt3/sqrt3 = (6 - sqrt3)/3`
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°