Advertisements
Advertisements
Question
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Solution
cos 58° = cos (90° - 32°) = sin 32°
sin 22° = sin (90° - 68°) = cos 68°
cos 38° = cos (90 – 52) = sin 52°
tan 18° = cot 72 tan 35° = cot 55°
`=> sin 32^@/sin 32^@ + cos 68^@/cos 68^@ - (sin 52 cosec 52)/(tan 72.cot72 tan 55 cot 55.tan 60)`
`= 1 + 1 - 1/sqrt3 = (2sqrt3-1)/sqrt3 xx sqrt3/sqrt3 = (6 - sqrt3)/3`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.