Advertisements
Advertisements
Question
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
Solution
Given A = 60° and B = 30°
LHS = cos(A – B)
= cos (60° – 30°)
= cos 30°
= `(sqrt3)/(2)`
RHS = cos A cos B + sin A sin B
= cos 60° cos 30° + sin 60° sin 30°
= `(1)/(2) (sqrt3)/(2) + (sqrt3)/(2) (1)/(2)`
= `(sqrt3)/(4) + (sqrt3)/(4)`
= `(sqrt3)/(2)`
LHS = RHS
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `2sin x/(2)` = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.