Advertisements
Advertisements
Question
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Solution
Tan (90 – A) = cot A
`=> (cot A.cot A)/(cosec^2 A) - cos^2 A`
`=> cot^2 A/cosec^2 A - cos^2 A`
`=> cos^2 A/sin^2 A - cos^2 A => cos^2 A cos^2 A = 0`
Hence proved
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos x and x is acute, state the value of x
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`