Advertisements
Advertisements
Question
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`
Solution
We will use the known values of trigonometric functions at specific angles:
cos 60° = `1/2`
sec 30° = `1/(cos 30°) = 2/sqrt3`
tan 45° = 1
Calculating the numerator:
`5cos^2 60° + 4sec^2 30° − tan^2 45°` = `5 (1/2)^2 + 4(2/sqrt3)^2 − 1^2`
= `5(1/4) + 4(4/3) − 1`
= `5/4 + 16/3 − 1`
Calculating the denominator:
`sin^2 30° + sin^2 60° = (1/2)^2 + (sqrt3/2)^2`
`= 1/4 + 3/4`
= 1
Therefore, the expression simplifies to:
`((5/4) + 16/3 - 1)/1`
= `5/4 + 16/3 - 1`
Converting the fractions to a common denominator and simplifying:
= `(15 + 64 - 12)/12`
= `67/12`
So, the evaluated result is `67/12`.
APPEARS IN
RELATED QUESTIONS
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
If sin x = cos x and x is acute, state the value of x
find the value of: sin2 30° + cos2 30°+ cot2 45°
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`