Advertisements
Advertisements
Question
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Solution
sinθ = cosθ
⇒ `"sinθ"/"cosθ" = "cosθ"/"cosθ"`
⇒ tanθ = 1
⇒ tanθ = tan45°
⇒ θ = 45°.
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
sin 2A = 2 sin A is true when A = ______.
Evaluate cos 48° − sin 42°
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Evaluate tan 35° tan 40° tan 50° tan 55°
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If sin x = cos x and x is acute, state the value of x
If `sqrt3` = 1.732, find (correct to two decimal place) the value of sin 60o
find the value of: cosec2 60° - tan2 30°
find the value of: sin2 30° + cos2 30°+ cot2 45°
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10