English

Find the value of x in the following: √ 3 tan 2x = cos60° + sin45° cos45° - Mathematics

Advertisements
Advertisements

Question

Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°

Sum

Solution

`sqrt(3)`tan2x = cos60° + sin45° cos45°

⇒ `sqrt(3)tan2x = (1)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`

⇒`sqrt(3)tan2x = (1)/(2) + (1)/(2)`
⇒`sqrt(3)`tan2x =1

⇒ tan2x = `(1)/sqrt(3)`
⇒ tan2x = tan30°
⇒ 2x = 30°
⇒ x = 15°.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.5

RELATED QUESTIONS

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


sin 2A = 2 sin A is true when A = ______.


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Prove that:
sin 60° = 2 sin 30° cos 30°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×