Advertisements
Advertisements
Question
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Solution
`sqrt(3)`tan2x = cos60° + sin45° cos45°
⇒ `sqrt(3)tan2x = (1)/(2) + (1)/sqrt(2) xx (1)/sqrt(2)`
⇒`sqrt(3)tan2x = (1)/(2) + (1)/(2)`
⇒`sqrt(3)`tan2x =1
⇒ tan2x = `(1)/sqrt(3)`
⇒ tan2x = tan30°
⇒ 2x = 30°
⇒ x = 15°.
APPEARS IN
RELATED QUESTIONS
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
sin 2A = 2 sin A is true when A = ______.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Prove that:
sin 60° = 2 sin 30° cos 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Given A = 60° and B = 30°,
prove that : cos (A - B) = cos A cos B + sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: sin2 60° + 2tan 45° – cos2 30°.