Advertisements
Advertisements
Question
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Solution
We have `sin (90^@ - theta) = cos theta` and `cos(90^@ - theta) = sin theta` so
`sin 596@ + cos 56^@ = sin(90^@ - 31^@) + cos 90^@ (90^@ - 34^@)`
`= cos 31^@ + sin 34^@`
Thus the desired expression is `cos 31^@ + sin 34^@`
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following
`sec 11^@/(cosec 79^@)`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
1 + tan2 30° = sec2 30°