Advertisements
Advertisements
Question
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Solution
(sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
sin30° = `(1)/(2)`
sin45° = `(1)/sqrt(2)`
sin90° = 1
cos45° = `(1)/sqrt(2)`
cos60° = `(1)/(2)`
(sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°)
= `(1 + 1/sqrt(2) + 1/sqrt(2))(1 - 1/sqrt(2) + 1/sqrt(2))`
= `(3/2 + 1/sqrt(2))(3/2 - 1/sqrt(2))`
= `(3/2)^2 - (1/sqrt(2))^2`
= `(9)/(4) - (1)/(2)`
= `(9 - 2)/(4)`
= `(7)/(4)`.
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
Prove that:
cos2 30° - sin2 30° = cos 60°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
secθ . Cot θ= cosecθ ; write true or false
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Prove that : sec245° - tan245° = 1
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is