Advertisements
Advertisements
Question
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
Solution
Given that A= 15°
`(cos 3"A" – 2 cos 4"A")/(sin 3"A" + 2 sin 4"A")`
`= (cos 3 (15°) – 2 cos 4 (15°))/(sin 3 (15°) + 2 sin 4 (15°))`
= `(cos 45° – 2 cos 60°)/(sin 45° + 2 sin 60°)`
= `(1/(sqrt2) – 2 (1/2))/(1/(sqrt2)+2 (sqrt3/2)`
= `(1/(sqrt2) – 1)/(1/(sqrt2)+ sqrt3)`
`= ((1 - sqrt2)/sqrt2)/((1 + sqrt6)/sqrt2)`
= `(1 – sqrt2)/(1+ sqrt6)`
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate tan 35° tan 40° tan 50° tan 55°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sec2 30° + tan2 45°
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
If sin(A +B) = 1(A -B) = 1, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.