English

find the value of: cos2 60° + sec2 30° + tan2 45° - Mathematics

Advertisements
Advertisements

Question

find the value of: cos2 60° + sec2 30° + tan2 45°

Sum

Solution

cos 60° + sec2 30° + tan2 45° = `(1/2)^2 + (2/sqrt3)^2 + 1^2`

= `(1)/(4) + (4)/(3) + 1`

= `( 3 + 16 + 12)/(12)`

= `(31)/(12)`

= `2(7)/(12)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 1.6 | Page 291

RELATED QUESTIONS

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate the following:

2tan2 45° + cos2 30° − sin2 60°


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`cos 19^@/sin 71^@`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


Prove that:

4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2


For any angle θ, state the value of: sin2 θ + cos2 θ


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following: `2sin  x/(2)` = 1


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify the following equalities:

sin2 60° + cos2 60° = 1


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×