English

In ΔABC right angled at B, ∠A = ∠C. Find the value of: (i) sinA cosC + cosA sinC (ii) sinA sinB + cosA cosB - Mathematics

Advertisements
Advertisements

Question

In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB

Sum

Solution


Since ∠B is right angled ⇒ ∠B = 90°
In ΔABC,
∠A + ∠B + ∠C = 180°
But ∠A = ∠C
⇒ ∠A + 90° + ∠A = 180°
⇒ 2∠A = 90°
⇒ ∠A = 45° = ∠C
(i) sinA cosC + cosA sinC
= sin45° cos45° + cos45° sin45°

= `(1)/sqrt(2) xx (1)/sqrt(2) + (1)/sqrt(2) xx (1)/sqrt(2)`

= `(1)/(2) + (1)/(2)`
= 1
(ii) sinA sinB + cosA cosB
sin45° sin90° + cos45° cos90°

= `(1)/sqrt(2) xx 1 + (1)/sqrt(2) xx 0`

= `(1)/sqrt(2)`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 26

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


Evaluate cos 48° − sin 42°


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


If A, B, C are the interior angles of a triangle ABC, prove that

`tan ((C+A)/2) = cot  B/2`


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


find the value of: sin 30° cos 30°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

cos2 30°  - sin2 30° = cos 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: tan230° + tan260° + tan245°


Find the value of x in the following:  2 sin3x = `sqrt(3)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


The value of 5 sin2 90° – 2 cos2 0° is ______.


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×