Advertisements
Advertisements
Question
The value of 5 sin2 90° – 2 cos2 0° is ______.
Options
– 2
5
3
– 3
Solution
The value of 5 sin2 90° – 2 cos2 0° is 3.
Explanation:
We have,
`\implies` 5 sin2 90° – 2 cos2 0°
`\implies` 5 × (1)2 – 2 × (1)2 = 5 – 2 = 3
APPEARS IN
RELATED QUESTIONS
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1