English

Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°). - Mathematics

Advertisements
Advertisements

Question

Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).

Sum

Solution

4(sin430° + cos460°) - 3(cos245° - sin290°).

sin30° = `(1)/(2)`
sin90° = 1

cos45° = `(1)/sqrt(2)`

cos60° = `(1)/(2)`
4(sin430° + cos460°) - 3(cos245° - sin290°)

= `4((1/2)^4 + (1/2)^4) -3((1/sqrt(2))^2 - (1)^2)`

= `4(1/16 + 1/16) -3(1/2 - 1)`

= `4 xx (2)/(16) + 3 xx (1)/(2)`

= `(1)/(2) + (3)/(2)`

= `(4)/(2)`
= 2.

shaalaa.com
  Is there an error in this question or solution?
Chapter 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

Frank Mathematics [English] Class 9 ICSE
Chapter 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 1.1

RELATED QUESTIONS

If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify the following equalities:

1 + tan2 30° = sec2 30°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×