Advertisements
Advertisements
Question
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Solution
We have to find: (sin 72° + cos 18°) (sin 72° − cos 18°)
Since `sin(90^@ - theta) = cos theta` So
sin 72° + cos 18°) (sin 72° − cos 18°) = `(sin 72^@)^2 - (cos 18^@)^2`
`= [sin (90^@ - 18^@)]^2 - (cos 18^@)^2`
`= (cos 18^@)^2 - (cos 18^@)^2`
`= cos^2 18^@ - cos^2 18^@`
= 0
So value of `(sin 72^@ + cos 18^@)(sin 72^@ - cos 18^@)` is 0
APPEARS IN
RELATED QUESTIONS
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`