Advertisements
Advertisements
Question
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Options
sin 60°
cos 60°
tan 60°
sin 30°
Solution
`(2 tan 30°)/(1+tan^2 30°)` = sin 60°.
Explanation:
`(2 tan 30°)/(1+tan^2 30°)`
= `(2(1/sqrt3))/(1+(1/sqrt3)^2)`
= `(2/sqrt3)/(1+1/3)`
= `(2/sqrt3)/(4/3)`
= `6/(4sqrt3)`
= `sqrt3/2`
Out of the given alternatives, only sin 60° = `sqrt3/2`
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate tan 35° tan 40° tan 50° tan 55°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin 30° cos 30°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10