Advertisements
Advertisements
Question
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
Solution
Given that,
sin α = `1/2`
So, sin α = sin 30° = `1/2`
`\implies` α = 30°
Now, (3 cos α – 4 cos3 α)
= (3 cos 30° – 4 cos3 30°)
= `(3 xx sqrt(3)/2 - 4 xx (sqrt(3)/2)^3)`
= `(3sqrt(3))/2 - (3sqrt(3))/2`
= 0
APPEARS IN
RELATED QUESTIONS
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
find the value of: tan 30° tan 60°
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.