Advertisements
Advertisements
प्रश्न
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
उत्तर
Given that,
sin α = `1/2`
So, sin α = sin 30° = `1/2`
`\implies` α = 30°
Now, (3 cos α – 4 cos3 α)
= (3 cos 30° – 4 cos3 30°)
= `(3 xx sqrt(3)/2 - 4 xx (sqrt(3)/2)^3)`
= `(3sqrt(3))/2 - (3sqrt(3))/2`
= 0
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Find the value of x in the following: tan x = sin45° cos45° + sin30°