हिंदी

Prove that: cos 30° . cos 60° - sin 30° . sin 60°  = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0

योग

उत्तर

LHS=cos 30°. cos 60° - sin 30°. sin 60°

= `(sqrt3)/(2) (1)/(2) – (1)/(2) (sqrt3)/(2) = (sqrt3)/(4) – (sqrt3)/(4) = 0 = RHS`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.2 | पृष्ठ २९१

संबंधित प्रश्न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


sin 2A = 2 sin A is true when A = ______.


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

cosec 31° − sec 59°


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


find the value of: cos2 60° + sec2 30° + tan2 45°


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`


Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Prove that : sec245° - tan245° = 1


Find the value of x in the following:  2 sin3x = `sqrt(3)`


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×