Advertisements
Advertisements
प्रश्न
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
sin θ = cos θ for all values of θ.
This is true when θ = 45°
As
`sin 45° = 1/sqrt2`
`cos 45° = 1/sqrt2`
It is not true for all other values of θ.
As sin 30° = `1/2` and cos 30° = `sqrt3/2`
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: tan 30° tan 60°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin 30° = x and cos 60° = y, then x2 + y2 is
If 2 sin 2θ = `sqrt(3)` then the value of θ is
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.