हिंदी

If A = 30°; show that: 1 + sin 2 A + cos 2 A sin A + cos A = 2 cos A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`

योग

उत्तर

Given that A = 30°

LHS = `(1 + sin2"A" + cos2"A")/(sin "A" + cos "A")`

= `(1 + sin2 (30°) + cos2 (30°))/(sin 30° + cos 30°)`

= `(1 +(sqrt3)/(2) + (1)/(2))/((1)/(2) + (sqrt3)/(2)`

= `(3 + sqrt3)/(sqrt3 + 1)((sqrt3 – 1)/(sqrt3– 1))`

= `(3 sqrt3  – 3 + 3 – sqrt3)/(2)`

= `2 (sqrt3)/(2)`

= `sqrt3`

RHS = 2 cos A

= 2 cos (30°)

= `2(sqrt3/2)`

= `sqrt3`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.5 | पृष्ठ २९३

संबंधित प्रश्न

If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Find the value of:

tan2 30° + tan2 45° + tan2 60°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×