Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
उत्तर
Given that A = 30°
LHS = `(1 + sin2"A" + cos2"A")/(sin "A" + cos "A")`
= `(1 + sin2 (30°) + cos2 (30°))/(sin 30° + cos 30°)`
= `(1 +(sqrt3)/(2) + (1)/(2))/((1)/(2) + (sqrt3)/(2)`
= `(3 + sqrt3)/(sqrt3 + 1)((sqrt3 – 1)/(sqrt3– 1))`
= `(3 sqrt3 – 3 + 3 – sqrt3)/(2)`
= `2 (sqrt3)/(2)`
= `sqrt3`
RHS = 2 cos A
= 2 cos (30°)
= `2(sqrt3/2)`
= `sqrt3`
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Find the value of:
tan2 30° + tan2 45° + tan2 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If 2 sin 2θ = `sqrt(3)` then the value of θ is
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: sin2 60° + 2tan 45° – cos2 30°.