Advertisements
Advertisements
प्रश्न
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
उत्तर
Given that A = 30°
LHS = `(1 + sin2"A" + cos2"A")/(sin "A" + cos "A")`
= `(1 + sin2 (30°) + cos2 (30°))/(sin 30° + cos 30°)`
= `(1 +(sqrt3)/(2) + (1)/(2))/((1)/(2) + (sqrt3)/(2)`
= `(3 + sqrt3)/(sqrt3 + 1)((sqrt3 – 1)/(sqrt3– 1))`
= `(3 sqrt3 – 3 + 3 – sqrt3)/(2)`
= `2 (sqrt3)/(2)`
= `sqrt3`
RHS = 2 cos A
= 2 cos (30°)
= `2(sqrt3/2)`
= `sqrt3`
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Prove that:
cosec2 45° - cot2 45° = 1
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°