मराठी

If A = 30°; show that: 1 – cos 2 A sin 2 A = tan A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`

बेरीज

उत्तर

Given that A = 30°

LHS = `(1 – cos2 "A")/(sin 2"A")`

= `(1 – cos 2 (30°))/(sin2 (30°))`

= `(1 – (1)/(2))/((sqrt3)/(2)`

= `(1)/(sqrt3)`

RHS = tan A

= tan 30°

= `(1)/(sqrt3)`

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.4 | पृष्ठ २९३

संबंधित प्रश्‍न

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


Evaluate the following :

cosec 31° − sec 59°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cot65° + tan49°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cosec2 60° - tan2 30°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


find the value of :

3sin2 30° + 2tan2 60° - 5cos2 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`


Find the value of x in the following: `2sin  x/(2)` = 1


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If sin(A +B) = 1(A -B) = 1, find A and B.


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


Verify cos3A = 4cos3A – 3cosA, when A = 30°


The value of 5 sin2 90° – 2 cos2 0° is ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×