Advertisements
Advertisements
प्रश्न
find the value of :
3sin2 30° + 2tan2 60° - 5cos2 45°
उत्तर
3 sin2 30° + 2 tan2 60° – 5 cos2 45°
= `3(1/2)^2 +2(sqrt3)^2 – 5(1/sqrt2)^2`
= `(3)/(4)+6 –(5)/(2)`
= `(3 + 24 – 10)/(4)`
= `4(1)/(4)`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate cos 48° − sin 42°
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
find the value of: sin 30° cos 30°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sec2 30° + tan2 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
If 2 sin 2θ = `sqrt(3)` then the value of θ is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.