Advertisements
Advertisements
प्रश्न
Prove that
tan (55° − θ) − cot (35° + θ) = 0
उत्तर
\[\begin{array}{l} LHS =\tan( {55}^0 - \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\tan{ {90}^0 - ( {35}^0 + \theta)} - \cot( {35}^0 + \theta) \\ \end{array}\]
\[\begin{array}{l}=\cot( {35}^0 + \theta) - \cot( {35}^0 + \theta) \\ \end{array}\]
= 0
= RHS
APPEARS IN
संबंधित प्रश्न
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
If sin 30° = x and cos 60° = y, then x2 + y2 is