Advertisements
Advertisements
प्रश्न
Prove that
sin (70° + θ) − cos (20° − θ) = 0
उत्तर
\[\begin{array}{l}(i) L.H.S=sin( {70}^0 + \theta) - \cos( {20}^0- \theta) \\ \end{array}\]
\[\begin{array}{l}=sin{ {90}^0 - ( {20}^0 - \theta)} - \cos( {20}^0 - \theta) \\ \end{array}\]
\[\begin{array}{l}=\cos( {20}^0 - \theta) -\cos( {20}^0 - \theta) \\ \end{array}\]
=0
= RHS
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
If A, B, C are the interior angles of a triangle ABC, prove that
`tan ((C+A)/2) = cot B/2`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
The value of 5 sin2 90° – 2 cos2 0° is ______.