Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
उत्तर १
tan 3x = sin 45º cos 45º + sin 30º
`\Rightarrow tan3x=\frac{1}{\sqrt{2}}\times\frac{1}{\sqrt{2}}+\frac{1}{2}`
`\Rightarrow tan3x=\frac{1}{2}+\frac{1}{2} `
⇒ tan 3x = 1
⇒ tan 3x = tan 45º
⇒ 3x = 45º ⇒ x = 15º
उत्तर २
`tan x= 1/sqrt2 . 1.sqrt2 + 1/2` `[∵ sin 45^@ = 1/sqrt2 cos 45^@ = 1/sqrt2 sin 30^@ = 1/2]`
`tan x = 1/2 + 1/2`
tan x = 1
`tan x = tan 45^@`
APPEARS IN
संबंधित प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`