Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
उत्तर
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30°+ cos^2 30°)`
= `(5(1/2)^2 + 4(2/sqrt3)^2 - (1)^2)/((1/2)^2 + ((sqrt3)/2)^2)`
= `(5/4 + 16/3 - 1)/(1/4 + 3/4)`
= `(1/12(15 + 64 - 12))/((1 + 3)/4`
= `(1/12 xx67)/(4/4)`
= `67/12`
APPEARS IN
संबंधित प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
If sin x = cos y, then x + y = 45° ; write true of false
Evaluate:
`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cos2 60° + sin2 30°
Prove that:
cosec2 45° - cot2 45° = 1
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Find the value of x in the following: `2sin x/(2)` = 1
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
1 + tan2 30° = sec2 30°
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`