Advertisements
Advertisements
प्रश्न
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
उत्तर
Cos 𝜃 = sin (90° - 𝜃)
⇒ Cos (A – 26) = sin (90° −(A− 26°))
⇒ Sin 3A = sin (90° − (A – 26))
Equating angles on both sides
3A = 90° − A + 26°
`4A = 116° A = 116/4 = 29^@`
`∴ A = 29^@`
APPEARS IN
संबंधित प्रश्न
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate tan 35° tan 40° tan 50° tan 55°
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
find the value of: sin 30° cos 30°
find the value of: cos2 60° + sin2 30°
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.