Advertisements
Advertisements
प्रश्न
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
उत्तर
Given A = 30°
cos2A = cos 2 (30°) = cos 60° = `(1)/(2)`
= `(3)/(4) – (1)/(4)`
= `(1)/(2)`
`(1 – tan^2"A")/(1 + tan^2"A") = (1 – tan^2 30°)/(1 + tan^2 30°)`
= `(1 – (1)/(3))/(1+(1)/(3)`
= `(2)/(4)`
= '(1)/(2)`
∴ cos 2A = `cos^"A" – sin^2"A" = (1 – tan^2"A")/(1 + tan^2"A")`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Evaluate cos 48° − sin 42°
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Prove that
tan (55° − θ) − cot (35° + θ) = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
If sin x = cos x and x is acute, state the value of x
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cosec2 60° - tan2 30°
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Verify the following equalities:
sin2 60° + cos2 60° = 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`