Advertisements
Advertisements
प्रश्न
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
उत्तर
We know `sin(90^@ - theta) = cos theta` and `cosec(90^@ - theta) = sec theta` So
`cosec 54° + sin 72° = cosec(90^@ - 36^@) + sin (90^@ - 18^@)`
`= sec 36^@ + cos 18^@`
hus the desired expression is sec 36^@ + cos 18^@`
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Find the value of x in the following: `2sin x/(2)` = 1
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`