मराठी

Find the value of x in the following: 2 sin x 2 = 1 - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: `2sin  x/(2)` = 1

बेरीज

उत्तर

`2sin  x/(2)` = 1

⇒ `sin  x/(2) = (1)/(2)`

⇒ `sin  x/(2)` = sin30°

⇒ `x/(2)` = 30°
⇒ x  = 60°.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रँक Mathematics [English] Class 9 ICSE
पाठ 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.2

संबंधित प्रश्‍न

State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


find the value of: sin 30° cos 30°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°


Prove that:
sin 60° = 2 sin 30° cos 30°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


prove that:

cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Find the value of x in the following: tan x = sin45° cos45° + sin30°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If tan(A - B) = `(1)/sqrt(3)` and tan(A + B) = `sqrt(3)`, find A and B.


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

sin2 60° + cos2 60° = 1


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×