Advertisements
Advertisements
Question
Find the value of x in the following: `2sin x/(2)` = 1
Solution
`2sin x/(2)` = 1
⇒ `sin x/(2) = (1)/(2)`
⇒ `sin x/(2)` = sin30°
⇒ `x/(2)` = 30°
⇒ x = 60°.
APPEARS IN
RELATED QUESTIONS
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: tan 30° tan 60°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
secθ . Cot θ= cosecθ ; write true or false
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`