Advertisements
Advertisements
Question
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Solution
\[\begin{array}{l} \text{L.H.S}=cosec( {67}^\circ + \theta) - \sec( {23}^\circ- \theta) \\ \end{array}\]
\[\begin{array}{l}=cosec{ {90}^\circ - ( {23}^\circ-\theta)}-\sec( {23}^\circ - \theta) \\ \end{array}\]
\[\begin{array}{l}=\sec( {23}^\circ -\theta) - \sec( {23}^\circ - \theta) \\ \\ \end{array}\]
\[=0=R.H.S.\]
APPEARS IN
RELATED QUESTIONS
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
sin 2A = 2 sin A is true when A = ______.
If sin x = cos y, then x + y = 45° ; write true of false
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `sqrt(3)sin x` = cos x
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of 5 sin2 90° – 2 cos2 0° is ______.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.