Advertisements
Advertisements
Question
sin 2A = 2 sin A is true when A = ______.
Options
0°
30°
45°
60°
Solution
sin 2A = 2 sin A is true when A = 0.
Explanation:
Out of the given alternatives, only A = 0° is correct.
As sin 2A = sin 0° = 0
2 sinA = 2sin 0° = 2(0) = 0
Hence, 0° is correct.
APPEARS IN
RELATED QUESTIONS
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
cosec 31° − sec 59°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
cos2 30° - sin2 30° = cos 60°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is